Total
324337 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-68476 | 2025-12-23 | 7.7 High | ||
| KEDA is a Kubernetes-based Event Driven Autoscaling component. Prior to versions 2.17.3 and 2.18.3, an Arbitrary File Read vulnerability has been identified in KEDA, potentially affecting any KEDA resource that uses TriggerAuthentication to configure HashiCorp Vault authentication. The vulnerability stems from an incorrect or insufficient path validation when loading the Service Account Token specified in spec.hashiCorpVault.credential.serviceAccount. An attacker with permissions to create or modify a TriggerAuthentication resource can exfiltrate the content of any file from the node's filesystem (where the KEDA pod resides) by directing the file's content to a server under their control, as part of the Vault authentication request. The potential impact includes the exfiltration of sensitive system information, such as secrets, keys, or the content of files like /etc/passwd. This issue has been patched in versions 2.17.3 and 2.18.3. | ||||
| CVE-2025-7782 | 2 Wordpress, Wp-jobhunt Project | 2 Wordpress, Wp-jobhunt | 2025-12-23 | 7.6 High |
| The WP JobHunt plugin for WordPress, used by the JobCareer theme, is vulnerable to unauthorized modification of data due to a missing capability check on the 'cs_update_application_status_callback' function in all versions up to, and including, 7.7. This makes it possible for authenticated attackers, with Candidate-level access and above, to inject cross-site scripting into the 'status' parameter of applied jobs for any user. | ||||
| CVE-2025-68338 | 1 Linux | 1 Linux Kernel | 2025-12-23 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: net: dsa: microchip: Don't free uninitialized ksz_irq If something goes wrong at setup, ksz_irq_free() can be called on uninitialized ksz_irq (for example when ksz_ptp_irq_setup() fails). It leads to freeing uninitialized IRQ numbers and/or domains. Use dsa_switch_for_each_user_port_continue_reverse() in the error path to iterate only over the fully initialized ports. | ||||
| CVE-2025-68339 | 1 Linux | 1 Linux Kernel | 2025-12-23 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: atm/fore200e: Fix possible data race in fore200e_open() Protect access to fore200e->available_cell_rate with rate_mtx lock in the error handling path of fore200e_open() to prevent a data race. The field fore200e->available_cell_rate is a shared resource used to track available bandwidth. It is concurrently accessed by fore200e_open(), fore200e_close(), and fore200e_change_qos(). In fore200e_open(), the lock rate_mtx is correctly held when subtracting vcc->qos.txtp.max_pcr from available_cell_rate to reserve bandwidth. However, if the subsequent call to fore200e_activate_vcin() fails, the function restores the reserved bandwidth by adding back to available_cell_rate without holding the lock. This introduces a race condition because available_cell_rate is a global device resource shared across all VCCs. If the error path in fore200e_open() executes concurrently with operations like fore200e_close() or fore200e_change_qos() on other VCCs, a read-modify-write race occurs. Specifically, the error path reads the rate without the lock. If another CPU acquires the lock and modifies the rate (e.g., releasing bandwidth in fore200e_close()) between this read and the subsequent write, the error path will overwrite the concurrent update with a stale value. This results in incorrect bandwidth accounting. | ||||
| CVE-2025-68341 | 1 Linux | 1 Linux Kernel | 2025-12-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: veth: reduce XDP no_direct return section to fix race As explain in commit fa349e396e48 ("veth: Fix race with AF_XDP exposing old or uninitialized descriptors") for veth there is a chance after napi_complete_done() that another CPU can manage start another NAPI instance running veth_pool(). For NAPI this is correctly handled as the napi_schedule_prep() check will prevent multiple instances from getting scheduled, but for the remaining code in veth_pool() this can run concurrent with the newly started NAPI instance. The problem/race is that xdp_clear_return_frame_no_direct() isn't designed to be nested. Prior to commit 401cb7dae813 ("net: Reference bpf_redirect_info via task_struct on PREEMPT_RT.") the temporary BPF net context bpf_redirect_info was stored per CPU, where this wasn't an issue. Since this commit the BPF context is stored in 'current' task_struct. When running veth in threaded-NAPI mode, then the kthread becomes the storage area. Now a race exists between two concurrent veth_pool() function calls one exiting NAPI and one running new NAPI, both using the same BPF net context. Race is when another CPU gets within the xdp_set_return_frame_no_direct() section before exiting veth_pool() calls the clear-function xdp_clear_return_frame_no_direct(). | ||||
| CVE-2025-68342 | 1 Linux | 1 Linux Kernel | 2025-12-23 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_receive_bulk_callback(): check actual_length before accessing data The URB received in gs_usb_receive_bulk_callback() contains a struct gs_host_frame. The length of the data after the header depends on the gs_host_frame hf::flags and the active device features (e.g. time stamping). Introduce a new function gs_usb_get_minimum_length() and check that we have at least received the required amount of data before accessing it. Only copy the data to that skb that has actually been received. [mkl: rename gs_usb_get_minimum_length() -> +gs_usb_get_minimum_rx_length()] | ||||
| CVE-2025-46295 | 2 Apache, Claris | 2 Commons Text, Filemaker Server | 2025-12-23 | 9.8 Critical |
| Apache Commons Text versions prior to 1.10.0 included interpolation features that could be abused when applications passed untrusted input into the text-substitution API. Because some interpolators could trigger actions like executing commands or accessing external resources, an attacker could potentially achieve remote code execution. This vulnerability has been fully addressed in FileMaker Server 22.0.4. | ||||
| CVE-2025-66918 | 2 Edoc-doctor-appointment-system Project, Hashenudara | 2 Edoc-doctor-appointment-system, Edoc-doctor-appointment-system | 2025-12-23 | 8.8 High |
| edoc-doctor-appointment-system v1.0.1 is vulnerable to Cross Site Scripting (XSS) in admin/add-session.php via the "title" parameter. | ||||
| CVE-2025-46296 | 1 Claris | 1 Filemaker Server | 2025-12-23 | 5.4 Medium |
| An authorization bypass vulnerability in FileMaker Server Admin Console allowed administrator roles with minimal privileges to access administrative features such as viewing license details and downloading application logs. This vulnerability has been fully addressed in FileMaker Server 22.0.4. | ||||
| CVE-2025-46294 | 1 Claris | 1 Filemaker Server | 2025-12-23 | 5.3 Medium |
| To enhance security, the FileMaker Server 22.0.4 installer now includes an option to disable IIS short filename enumeration by setting NtfsDisable8dot3NameCreation in the Windows registry. This prevents attackers from using the tilde character to discover hidden files and directories. This vulnerability has been fully addressed in FileMaker Server 22.0.4. The IIS Shortname Vulnerability exploits how Microsoft IIS handles legacy 8.3 short filenames, allowing attackers to infer the existence of files or directories by crafting requests with the tilde (~) character. | ||||
| CVE-2025-34392 | 2 Barracuda, Barracuda Networks | 2 Rmm, Rmm | 2025-12-23 | 9.8 Critical |
| Barracuda Service Center, as implemented in the RMM solution, in versions prior to 2025.1.1, does not verify the URL defined in an attacker-controlled WSDL that is later loaded by the application. This can lead to arbitrary file write and remote code execution via webshell upload. | ||||
| CVE-2025-34393 | 2 Barracuda, Barracuda Networks | 2 Rmm, Rmm | 2025-12-23 | 9.8 Critical |
| Barracuda Service Center, as implemented in the RMM solution, in versions prior to 2025.1.1, does not correctly verify the name of an attacker-controlled WSDL service, leading to insecure reflection. This can result in remote code execution through either invocation of arbitrary methods or deserialization of untrusted types. | ||||
| CVE-2025-34394 | 2 Barracuda, Barracuda Networks | 2 Rmm, Rmm | 2025-12-23 | 9.8 Critical |
| Barracuda Service Center, as implemented in the RMM solution, in versions prior to 2025.1.1, exposes a .NET Remoting service that is insufficiently protected against deserialization of arbitrary types. This can lead to remote code execution. | ||||
| CVE-2025-34395 | 2 Barracuda, Barracuda Networks | 2 Rmm, Rmm | 2025-12-23 | 7.5 High |
| Barracuda Service Center, as implemented in the RMM solution, in versions prior to 2025.1.1, exposes a .NET Remoting service in which an unauthenticated attacker can invoke a method vulnerable to path traversal to read arbitrary files. This vulnerability can be escalated to remote code execution by retrieving the .NET machine keys. | ||||
| CVE-2025-13733 | 1 Dr.buho | 1 Buhontfs | 2025-12-23 | N/A |
| BuhoNTFS contains an insecure XPC service that allows local, unprivileged users to escalate their privileges to root via insecure functions.This issue affects BuhoNTFS: 1.3.2. | ||||
| CVE-2025-34410 | 2 1panel, Fit2cloud | 2 1panel, 1panel | 2025-12-23 | 7.1 High |
| 1Panel versions 1.10.33 - 2.0.15 contain a cross-site request forgery (CSRF) vulnerability in the Change Username functionality available from the settings panel (/settings/panel). The endpoint does not implement CSRF protections such as anti-CSRF tokens or Origin/Referer validation. An attacker can craft a malicious webpage that submits a username-change request; when a victim visits the page while authenticated, the browser includes valid session cookies and the request succeeds. This allows an attacker to change the victim’s 1Panel username without consent. After the change, the victim is logged out and unable to log in with the previous username, resulting in account lockout and denial of service. | ||||
| CVE-2023-5094 | 2025-12-23 | N/A | ||
| This CVE id was assigned to an issue which was later deemed not security relevant. | ||||
| CVE-2023-5093 | 2025-12-23 | N/A | ||
| This CVE id was assigned to an issue which was later deemed not security relevant. | ||||
| CVE-2023-5092 | 2025-12-23 | N/A | ||
| This CVE id was assigned to an issue which was later deemed not security relevant. | ||||
| CVE-2022-50655 | 1 Linux | 1 Linux Kernel | 2025-12-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ppp: associate skb with a device at tx Syzkaller triggered flow dissector warning with the following: r0 = openat$ppp(0xffffffffffffff9c, &(0x7f0000000000), 0xc0802, 0x0) ioctl$PPPIOCNEWUNIT(r0, 0xc004743e, &(0x7f00000000c0)) ioctl$PPPIOCSACTIVE(r0, 0x40107446, &(0x7f0000000240)={0x2, &(0x7f0000000180)=[{0x20, 0x0, 0x0, 0xfffff034}, {0x6}]}) pwritev(r0, &(0x7f0000000040)=[{&(0x7f0000000140)='\x00!', 0x2}], 0x1, 0x0, 0x0) [ 9.485814] WARNING: CPU: 3 PID: 329 at net/core/flow_dissector.c:1016 __skb_flow_dissect+0x1ee0/0x1fa0 [ 9.485929] skb_get_poff+0x53/0xa0 [ 9.485937] bpf_skb_get_pay_offset+0xe/0x20 [ 9.485944] ? ppp_send_frame+0xc2/0x5b0 [ 9.485949] ? _raw_spin_unlock_irqrestore+0x40/0x60 [ 9.485958] ? __ppp_xmit_process+0x7a/0xe0 [ 9.485968] ? ppp_xmit_process+0x5b/0xb0 [ 9.485974] ? ppp_write+0x12a/0x190 [ 9.485981] ? do_iter_write+0x18e/0x2d0 [ 9.485987] ? __import_iovec+0x30/0x130 [ 9.485997] ? do_pwritev+0x1b6/0x240 [ 9.486016] ? trace_hardirqs_on+0x47/0x50 [ 9.486023] ? __x64_sys_pwritev+0x24/0x30 [ 9.486026] ? do_syscall_64+0x3d/0x80 [ 9.486031] ? entry_SYSCALL_64_after_hwframe+0x63/0xcd Flow dissector tries to find skb net namespace either via device or via socket. Neigher is set in ppp_send_frame, so let's manually use ppp->dev. | ||||