Filtered by vendor Fedoraproject
Subscriptions
Filtered by product Fedora
Subscriptions
Total
5344 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2024-29131 | 4 Apache, Fedoraproject, Netapp and 1 more | 7 Commons Configuration, Fedora, Ontap Tools and 4 more | 2025-05-01 | 7.3 High |
| Out-of-bounds Write vulnerability in Apache Commons Configuration.This issue affects Apache Commons Configuration: from 2.0 before 2.10.1. Users are recommended to upgrade to version 2.10.1, which fixes the issue. | ||||
| CVE-2024-29133 | 3 Apache, Fedoraproject, Redhat | 5 Commons Configuration, Fedora, Amq Broker and 2 more | 2025-05-01 | 5.4 Medium |
| Out-of-bounds Write vulnerability in Apache Commons Configuration.This issue affects Apache Commons Configuration: from 2.0 before 2.10.1. Users are recommended to upgrade to version 2.10.1, which fixes the issue. | ||||
| CVE-2020-11993 | 8 Apache, Canonical, Debian and 5 more | 16 Http Server, Ubuntu Linux, Debian Linux and 13 more | 2025-05-01 | 7.5 High |
| Apache HTTP Server versions 2.4.20 to 2.4.43 When trace/debug was enabled for the HTTP/2 module and on certain traffic edge patterns, logging statements were made on the wrong connection, causing concurrent use of memory pools. Configuring the LogLevel of mod_http2 above "info" will mitigate this vulnerability for unpatched servers. | ||||
| CVE-2021-33193 | 6 Apache, Debian, Fedoraproject and 3 more | 9 Http Server, Debian Linux, Fedora and 6 more | 2025-05-01 | 7.5 High |
| A crafted method sent through HTTP/2 will bypass validation and be forwarded by mod_proxy, which can lead to request splitting or cache poisoning. This issue affects Apache HTTP Server 2.4.17 to 2.4.48. | ||||
| CVE-2021-36160 | 7 Apache, Broadcom, Debian and 4 more | 16 Http Server, Brocade Fabric Operating System Firmware, Debian Linux and 13 more | 2025-05-01 | 7.5 High |
| A carefully crafted request uri-path can cause mod_proxy_uwsgi to read above the allocated memory and crash (DoS). This issue affects Apache HTTP Server versions 2.4.30 to 2.4.48 (inclusive). | ||||
| CVE-2021-39275 | 7 Apache, Debian, Fedoraproject and 4 more | 14 Http Server, Debian Linux, Fedora and 11 more | 2025-05-01 | 9.8 Critical |
| ap_escape_quotes() may write beyond the end of a buffer when given malicious input. No included modules pass untrusted data to these functions, but third-party / external modules may. This issue affects Apache HTTP Server 2.4.48 and earlier. | ||||
| CVE-2021-44790 | 8 Apache, Apple, Debian and 5 more | 20 Http Server, Mac Os X, Macos and 17 more | 2025-05-01 | 9.8 Critical |
| A carefully crafted request body can cause a buffer overflow in the mod_lua multipart parser (r:parsebody() called from Lua scripts). The Apache httpd team is not aware of an exploit for the vulnerabilty though it might be possible to craft one. This issue affects Apache HTTP Server 2.4.51 and earlier. | ||||
| CVE-2022-23943 | 5 Apache, Debian, Fedoraproject and 2 more | 8 Http Server, Debian Linux, Fedora and 5 more | 2025-05-01 | 9.8 Critical |
| Out-of-bounds Write vulnerability in mod_sed of Apache HTTP Server allows an attacker to overwrite heap memory with possibly attacker provided data. This issue affects Apache HTTP Server 2.4 version 2.4.52 and prior versions. | ||||
| CVE-2022-26377 | 4 Apache, Fedoraproject, Netapp and 1 more | 6 Http Server, Fedora, Clustered Data Ontap and 3 more | 2025-05-01 | 7.5 High |
| Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling') vulnerability in mod_proxy_ajp of Apache HTTP Server allows an attacker to smuggle requests to the AJP server it forwards requests to. This issue affects Apache HTTP Server Apache HTTP Server 2.4 version 2.4.53 and prior versions. | ||||
| CVE-2022-30556 | 4 Apache, Fedoraproject, Netapp and 1 more | 5 Http Server, Fedora, Clustered Data Ontap and 2 more | 2025-05-01 | 7.5 High |
| Apache HTTP Server 2.4.53 and earlier may return lengths to applications calling r:wsread() that point past the end of the storage allocated for the buffer. | ||||
| CVE-2022-31813 | 4 Apache, Fedoraproject, Netapp and 1 more | 6 Http Server, Fedora, Clustered Data Ontap and 3 more | 2025-05-01 | 9.8 Critical |
| Apache HTTP Server 2.4.53 and earlier may not send the X-Forwarded-* headers to the origin server based on client side Connection header hop-by-hop mechanism. This may be used to bypass IP based authentication on the origin server/application. | ||||
| CVE-2022-45062 | 3 Debian, Fedoraproject, Xfce | 3 Debian Linux, Fedora, Xfce4-settings | 2025-05-01 | 9.8 Critical |
| In Xfce xfce4-settings before 4.16.4 and 4.17.x before 4.17.1, there is an argument injection vulnerability in xfce4-mime-helper. | ||||
| CVE-2022-45060 | 5 Debian, Fedoraproject, Redhat and 2 more | 11 Debian Linux, Fedora, Enterprise Linux and 8 more | 2025-05-01 | 7.5 High |
| An HTTP Request Forgery issue was discovered in Varnish Cache 5.x and 6.x before 6.0.11, 7.x before 7.1.2, and 7.2.x before 7.2.1. An attacker may introduce characters through HTTP/2 pseudo-headers that are invalid in the context of an HTTP/1 request line, causing the Varnish server to produce invalid HTTP/1 requests to the backend. This could, in turn, be used to exploit vulnerabilities in a server behind the Varnish server. Note: the 6.0.x LTS series (before 6.0.11) is affected. | ||||
| CVE-2022-45059 | 2 Fedoraproject, Varnish Cache Project | 2 Fedora, Varnish Cache | 2025-05-01 | 7.5 High |
| An issue was discovered in Varnish Cache 7.x before 7.1.2 and 7.2.x before 7.2.1. A request smuggling attack can be performed on Varnish Cache servers by requesting that certain headers are made hop-by-hop, preventing the Varnish Cache servers from forwarding critical headers to the backend. | ||||
| CVE-2022-37290 | 2 Fedoraproject, Gnome | 2 Fedora, Nautilus | 2025-05-01 | 5.5 Medium |
| GNOME Nautilus 42.2 allows a NULL pointer dereference and get_basename application crash via a pasted ZIP archive. | ||||
| CVE-2022-32213 | 7 Debian, Fedoraproject, Llhttp and 4 more | 9 Debian Linux, Fedora, Llhttp and 6 more | 2025-04-30 | 6.5 Medium |
| The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly parse and validate Transfer-Encoding headers and can lead to HTTP Request Smuggling (HRS). | ||||
| CVE-2022-32212 | 5 Debian, Fedoraproject, Nodejs and 2 more | 7 Debian Linux, Fedora, Node.js and 4 more | 2025-04-30 | 8.1 High |
| A OS Command Injection vulnerability exists in Node.js versions <14.20.0, <16.20.0, <18.5.0 due to an insufficient IsAllowedHost check that can easily be bypassed because IsIPAddress does not properly check if an IP address is invalid before making DBS requests allowing rebinding attacks. | ||||
| CVE-2022-32215 | 7 Debian, Fedoraproject, Llhttp and 4 more | 9 Debian Linux, Fedora, Llhttp and 6 more | 2025-04-30 | 6.5 Medium |
| The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly handle multi-line Transfer-Encoding headers. This can lead to HTTP Request Smuggling (HRS). | ||||
| CVE-2021-22884 | 6 Fedoraproject, Netapp, Nodejs and 3 more | 16 Fedora, Active Iq Unified Manager, E-series Performance Analyzer and 13 more | 2025-04-30 | 7.5 High |
| Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to DNS rebinding attacks as the whitelist includes “localhost6”. When “localhost6” is not present in /etc/hosts, it is just an ordinary domain that is resolved via DNS, i.e., over network. If the attacker controls the victim's DNS server or can spoof its responses, the DNS rebinding protection can be bypassed by using the “localhost6” domain. As long as the attacker uses the “localhost6” domain, they can still apply the attack described in CVE-2018-7160. | ||||
| CVE-2021-22883 | 6 Fedoraproject, Netapp, Nodejs and 3 more | 12 Fedora, E-series Performance Analyzer, Node.js and 9 more | 2025-04-30 | 7.5 High |
| Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to a denial of service attack when too many connection attempts with an 'unknownProtocol' are established. This leads to a leak of file descriptors. If a file descriptor limit is configured on the system, then the server is unable to accept new connections and prevent the process also from opening, e.g. a file. If no file descriptor limit is configured, then this lead to an excessive memory usage and cause the system to run out of memory. | ||||