Filtered by vendor Redhat Subscriptions
Filtered by product Rhel Eus Subscriptions
Total 3034 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-38586 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-09-17 7.8 High
In the Linux kernel, the following vulnerability has been resolved: r8169: Fix possible ring buffer corruption on fragmented Tx packets. An issue was found on the RTL8125b when transmitting small fragmented packets, whereby invalid entries were inserted into the transmit ring buffer, subsequently leading to calls to dma_unmap_single() with a null address. This was caused by rtl8169_start_xmit() not noticing changes to nr_frags which may occur when small packets are padded (to work around hardware quirks) in rtl8169_tso_csum_v2(). To fix this, postpone inspecting nr_frags until after any padding has been applied.
CVE-2022-48757 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-09-17 7.1 High
In the Linux kernel, the following vulnerability has been resolved: net: fix information leakage in /proc/net/ptype In one net namespace, after creating a packet socket without binding it to a device, users in other net namespaces can observe the new `packet_type` added by this packet socket by reading `/proc/net/ptype` file. This is minor information leakage as packet socket is namespace aware. Add a net pointer in `packet_type` to keep the net namespace of of corresponding packet socket. In `ptype_seq_show`, this net pointer must be checked when it is not NULL.
CVE-2024-26906 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2025-09-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Disallow vsyscall page read for copy_from_kernel_nofault() When trying to use copy_from_kernel_nofault() to read vsyscall page through a bpf program, the following oops was reported: BUG: unable to handle page fault for address: ffffffffff600000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 3231067 P4D 3231067 PUD 3233067 PMD 3235067 PTE 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 20390 Comm: test_progs ...... 6.7.0+ #58 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...... RIP: 0010:copy_from_kernel_nofault+0x6f/0x110 ...... Call Trace: <TASK> ? copy_from_kernel_nofault+0x6f/0x110 bpf_probe_read_kernel+0x1d/0x50 bpf_prog_2061065e56845f08_do_probe_read+0x51/0x8d trace_call_bpf+0xc5/0x1c0 perf_call_bpf_enter.isra.0+0x69/0xb0 perf_syscall_enter+0x13e/0x200 syscall_trace_enter+0x188/0x1c0 do_syscall_64+0xb5/0xe0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 </TASK> ...... ---[ end trace 0000000000000000 ]--- The oops is triggered when: 1) A bpf program uses bpf_probe_read_kernel() to read from the vsyscall page and invokes copy_from_kernel_nofault() which in turn calls __get_user_asm(). 2) Because the vsyscall page address is not readable from kernel space, a page fault exception is triggered accordingly. 3) handle_page_fault() considers the vsyscall page address as a user space address instead of a kernel space address. This results in the fix-up setup by bpf not being applied and a page_fault_oops() is invoked due to SMAP. Considering handle_page_fault() has already considered the vsyscall page address as a userspace address, fix the problem by disallowing vsyscall page read for copy_from_kernel_nofault().
CVE-2023-52522 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-09-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fix possible store tearing in neigh_periodic_work() While looking at a related syzbot report involving neigh_periodic_work(), I found that I forgot to add an annotation when deleting an RCU protected item from a list. Readers use rcu_deference(*np), we need to use either rcu_assign_pointer() or WRITE_ONCE() on writer side to prevent store tearing. I use rcu_assign_pointer() to have lockdep support, this was the choice made in neigh_flush_dev().
CVE-2023-52623 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2025-09-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix a suspicious RCU usage warning I received the following warning while running cthon against an ontap server running pNFS: [ 57.202521] ============================= [ 57.202522] WARNING: suspicious RCU usage [ 57.202523] 6.7.0-rc3-g2cc14f52aeb7 #41492 Not tainted [ 57.202525] ----------------------------- [ 57.202525] net/sunrpc/xprtmultipath.c:349 RCU-list traversed in non-reader section!! [ 57.202527] other info that might help us debug this: [ 57.202528] rcu_scheduler_active = 2, debug_locks = 1 [ 57.202529] no locks held by test5/3567. [ 57.202530] stack backtrace: [ 57.202532] CPU: 0 PID: 3567 Comm: test5 Not tainted 6.7.0-rc3-g2cc14f52aeb7 #41492 5b09971b4965c0aceba19f3eea324a4a806e227e [ 57.202534] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022 [ 57.202536] Call Trace: [ 57.202537] <TASK> [ 57.202540] dump_stack_lvl+0x77/0xb0 [ 57.202551] lockdep_rcu_suspicious+0x154/0x1a0 [ 57.202556] rpc_xprt_switch_has_addr+0x17c/0x190 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6] [ 57.202596] rpc_clnt_setup_test_and_add_xprt+0x50/0x180 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6] [ 57.202621] ? rpc_clnt_add_xprt+0x254/0x300 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6] [ 57.202646] rpc_clnt_add_xprt+0x27a/0x300 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6] [ 57.202671] ? __pfx_rpc_clnt_setup_test_and_add_xprt+0x10/0x10 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6] [ 57.202696] nfs4_pnfs_ds_connect+0x345/0x760 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9] [ 57.202728] ? __pfx_nfs4_test_session_trunk+0x10/0x10 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9] [ 57.202754] nfs4_fl_prepare_ds+0x75/0xc0 [nfs_layout_nfsv41_files e3a4187f18ae8a27b630f9feae6831b584a9360a] [ 57.202760] filelayout_write_pagelist+0x4a/0x200 [nfs_layout_nfsv41_files e3a4187f18ae8a27b630f9feae6831b584a9360a] [ 57.202765] pnfs_generic_pg_writepages+0xbe/0x230 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9] [ 57.202788] __nfs_pageio_add_request+0x3fd/0x520 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202813] nfs_pageio_add_request+0x18b/0x390 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202831] nfs_do_writepage+0x116/0x1e0 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202849] nfs_writepages_callback+0x13/0x30 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202866] write_cache_pages+0x265/0x450 [ 57.202870] ? __pfx_nfs_writepages_callback+0x10/0x10 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202891] nfs_writepages+0x141/0x230 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202913] do_writepages+0xd2/0x230 [ 57.202917] ? filemap_fdatawrite_wbc+0x5c/0x80 [ 57.202921] filemap_fdatawrite_wbc+0x67/0x80 [ 57.202924] filemap_write_and_wait_range+0xd9/0x170 [ 57.202930] nfs_wb_all+0x49/0x180 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202947] nfs4_file_flush+0x72/0xb0 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9] [ 57.202969] __se_sys_close+0x46/0xd0 [ 57.202972] do_syscall_64+0x68/0x100 [ 57.202975] ? do_syscall_64+0x77/0x100 [ 57.202976] ? do_syscall_64+0x77/0x100 [ 57.202979] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 57.202982] RIP: 0033:0x7fe2b12e4a94 [ 57.202985] Code: 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 80 3d d5 18 0e 00 00 74 13 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 44 c3 0f 1f 00 48 83 ec 18 89 7c 24 0c e8 c3 [ 57.202987] RSP: 002b:00007ffe857ddb38 EFLAGS: 00000202 ORIG_RAX: 0000000000000003 [ 57.202989] RAX: ffffffffffffffda RBX: 00007ffe857dfd68 RCX: 00007fe2b12e4a94 [ 57.202991] RDX: 0000000000002000 RSI: 00007ffe857ddc40 RDI: 0000000000000003 [ 57.202992] RBP: 00007ffe857dfc50 R08: 7fffffffffffffff R09: 0000000065650f49 [ 57.202993] R10: 00007f ---truncated---
CVE-2025-26646 4 Apple, Linux, Microsoft and 1 more 8 Macos, Linux Kernel, .net and 5 more 2025-09-10 8 High
External control of file name or path in .NET, Visual Studio, and Build Tools for Visual Studio allows an authorized attacker to perform spoofing over a network.
CVE-2025-21172 4 Apple, Linux, Microsoft and 1 more 9 Macos, Linux Kernel, .net and 6 more 2025-09-09 7.5 High
.NET and Visual Studio Remote Code Execution Vulnerability
CVE-2025-21173 3 Linux, Microsoft, Redhat 5 Linux Kernel, .net, Visual Studio 2022 and 2 more 2025-09-09 7.3 High
.NET Elevation of Privilege Vulnerability
CVE-2025-21176 4 Apple, Linux, Microsoft and 1 more 22 Macos, Linux Kernel, .net and 19 more 2025-09-09 8.8 High
.NET, .NET Framework, and Visual Studio Remote Code Execution Vulnerability
CVE-2024-46981 3 Debian, Redhat, Redis 8 Debian Linux, Discovery, Enterprise Linux and 5 more 2025-09-05 7 High
Redis is an open source, in-memory database that persists on disk. An authenticated user may use a specially crafted Lua script to manipulate the garbage collector and potentially lead to remote code execution. The problem is fixed in 7.4.2, 7.2.7, and 6.2.17. An additional workaround to mitigate the problem without patching the redis-server executable is to prevent users from executing Lua scripts. This can be done using ACL to restrict EVAL and EVALSHA commands.
CVE-2023-1393 3 Fedoraproject, Redhat, X.org 7 Fedora, Enterprise Linux, Rhel Aus and 4 more 2025-08-29 7.8 High
A flaw was found in X.Org Server Overlay Window. A Use-After-Free may lead to local privilege escalation. If a client explicitly destroys the compositor overlay window (aka COW), the Xserver would leave a dangling pointer to that window in the CompScreen structure, which will trigger a use-after-free later.
CVE-2023-38545 5 Fedoraproject, Haxx, Microsoft and 2 more 19 Fedora, Libcurl, Windows 10 1809 and 16 more 2025-08-27 8.8 High
This flaw makes curl overflow a heap based buffer in the SOCKS5 proxy handshake. When curl is asked to pass along the host name to the SOCKS5 proxy to allow that to resolve the address instead of it getting done by curl itself, the maximum length that host name can be is 255 bytes. If the host name is detected to be longer, curl switches to local name resolving and instead passes on the resolved address only. Due to this bug, the local variable that means "let the host resolve the name" could get the wrong value during a slow SOCKS5 handshake, and contrary to the intention, copy the too long host name to the target buffer instead of copying just the resolved address there. The target buffer being a heap based buffer, and the host name coming from the URL that curl has been told to operate with.
CVE-2024-21145 3 Netapp, Oracle, Redhat 15 Bluexp, Cloud Insights Storage Workload Security Agent, Oncommand Insight and 12 more 2025-08-26 4.8 Medium
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: 2D). Supported versions that are affected are Oracle Java SE: 8u411, 8u411-perf, 11.0.23, 17.0.11, 21.0.3, 22.0.1; Oracle GraalVM for JDK: 17.0.11, 21.0.3, 22.0.1; Oracle GraalVM Enterprise Edition: 20.3.14 and 21.3.10. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized read access to a subset of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 4.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N).
CVE-2023-45802 4 Apache, Debian, Fedoraproject and 1 more 6 Http Server, Debian Linux, Fedora and 3 more 2025-08-25 5.9 Medium
When a HTTP/2 stream was reset (RST frame) by a client, there was a time window were the request's memory resources were not reclaimed immediately. Instead, de-allocation was deferred to connection close. A client could send new requests and resets, keeping the connection busy and open and causing the memory footprint to keep on growing. On connection close, all resources were reclaimed, but the process might run out of memory before that. This was found by the reporter during testing of CVE-2023-44487 (HTTP/2 Rapid Reset Exploit) with their own test client. During "normal" HTTP/2 use, the probability to hit this bug is very low. The kept memory would not become noticeable before the connection closes or times out. Users are recommended to upgrade to version 2.4.58, which fixes the issue.
CVE-2022-1615 3 Fedoraproject, Redhat, Samba 5 Fedora, Enterprise Linux, Rhel Eus and 2 more 2025-08-22 5.5 Medium
In Samba, GnuTLS gnutls_rnd() can fail and give predictable random values.
CVE-2018-25032 13 Apple, Azul, Debian and 10 more 47 Mac Os X, Macos, Zulu and 44 more 2025-08-21 7.5 High
zlib before 1.2.12 allows memory corruption when deflating (i.e., when compressing) if the input has many distant matches.
CVE-2024-42472 3 Debian, Flatpak, Redhat 8 Debian Linux, Flatpak, Enterprise Linux and 5 more 2025-08-19 10 Critical
Flatpak is a Linux application sandboxing and distribution framework. Prior to versions 1.14.0 and 1.15.10, a malicious or compromised Flatpak app using persistent directories could access and write files outside of what it would otherwise have access to, which is an attack on integrity and confidentiality. When `persistent=subdir` is used in the application permissions (represented as `--persist=subdir` in the command-line interface), that means that an application which otherwise doesn't have access to the real user home directory will see an empty home directory with a writeable subdirectory `subdir`. Behind the scenes, this directory is actually a bind mount and the data is stored in the per-application directory as `~/.var/app/$APPID/subdir`. This allows existing apps that are not aware of the per-application directory to still work as intended without general home directory access. However, the application does have write access to the application directory `~/.var/app/$APPID` where this directory is stored. If the source directory for the `persistent`/`--persist` option is replaced by a symlink, then the next time the application is started, the bind mount will follow the symlink and mount whatever it points to into the sandbox. Partial protection against this vulnerability can be provided by patching Flatpak using the patches in commits ceec2ffc and 98f79773. However, this leaves a race condition that could be exploited by two instances of a malicious app running in parallel. Closing the race condition requires updating or patching the version of bubblewrap that is used by Flatpak to add the new `--bind-fd` option using the patch and then patching Flatpak to use it. If Flatpak has been configured at build-time with `-Dsystem_bubblewrap=bwrap` (1.15.x) or `--with-system-bubblewrap=bwrap` (1.14.x or older), or a similar option, then the version of bubblewrap that needs to be patched is a system copy that is distributed separately, typically `/usr/bin/bwrap`. This configuration is the one that is typically used in Linux distributions. If Flatpak has been configured at build-time with `-Dsystem_bubblewrap=` (1.15.x) or with `--without-system-bubblewrap` (1.14.x or older), then it is the bundled version of bubblewrap that is included with Flatpak that must be patched. This is typically installed as `/usr/libexec/flatpak-bwrap`. This configuration is the default when building from source code. For the 1.14.x stable branch, these changes are included in Flatpak 1.14.10. The bundled version of bubblewrap included in this release has been updated to 0.6.3. For the 1.15.x development branch, these changes are included in Flatpak 1.15.10. The bundled version of bubblewrap in this release is a Meson "wrap" subproject, which has been updated to 0.10.0. The 1.12.x and 1.10.x branches will not be updated for this vulnerability. Long-term support OS distributions should backport the individual changes into their versions of Flatpak and bubblewrap, or update to newer versions if their stability policy allows it. As a workaround, avoid using applications using the `persistent` (`--persist`) permission.
CVE-2021-35567 5 Debian, Fedoraproject, Netapp and 2 more 19 Debian Linux, Fedora, Active Iq Unified Manager and 16 more 2025-08-15 6.8 Medium
Vulnerability in the Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Libraries). Supported versions that are affected are Java SE: 8u301, 11.0.12, 17; Oracle GraalVM Enterprise Edition: 20.3.3 and 21.2.0. Easily exploitable vulnerability allows low privileged attacker with network access via Kerberos to compromise Java SE, Oracle GraalVM Enterprise Edition. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Java SE, Oracle GraalVM Enterprise Edition, attacks may significantly impact additional products. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Java SE, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability can also be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. CVSS 3.1 Base Score 6.8 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:H/I:N/A:N).
CVE-2025-4123 2 Grafana, Redhat 6 Grafana, Enterprise Linux, Rhel Aus and 3 more 2025-08-15 7.6 High
A cross-site scripting (XSS) vulnerability exists in Grafana caused by combining a client path traversal and open redirect. This allows attackers to redirect users to a website that hosts a frontend plugin that will execute arbitrary JavaScript. This vulnerability does not require editor permissions and if anonymous access is enabled, the XSS will work. If the Grafana Image Renderer plugin is installed, it is possible to exploit the open redirect to achieve a full read SSRF. The default Content-Security-Policy (CSP) in Grafana will block the XSS though the `connect-src` directive.
CVE-2023-44443 2 Gimp, Redhat 3 Gimp, Enterprise Linux, Rhel Eus 2025-08-14 7.8 High
GIMP PSP File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PSP files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before writing to memory. An attacker can leverage this vulnerability to execute code in the context of the current process. . Was ZDI-CAN-22096.