Filtered by vendor Synology Subscriptions
Filtered by product Skynas Subscriptions
Total 29 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2017-5753 14 Arm, Canonical, Debian and 11 more 396 Cortex-a12, Cortex-a12 Firmware, Cortex-a15 and 393 more 2025-01-14 5.6 Medium
Systems with microprocessors utilizing speculative execution and branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis.
CVE-2018-1160 3 Debian, Netatalk, Synology 7 Debian Linux, Netatalk, Diskstation Manager and 4 more 2025-01-14 N/A
Netatalk before 3.1.12 is vulnerable to an out of bounds write in dsi_opensess.c. This is due to lack of bounds checking on attacker controlled data. A remote unauthenticated attacker can leverage this vulnerability to achieve arbitrary code execution.
CVE-2018-7170 4 Hpe, Netapp, Ntp and 1 more 10 Hpux-ntp, Hci, Solidfire and 7 more 2025-01-14 5.3 Medium
ntpd in ntp 4.2.x before 4.2.8p7 and 4.3.x before 4.3.92 allows authenticated users that know the private symmetric key to create arbitrarily-many ephemeral associations in order to win the clock selection of ntpd and modify a victim's clock via a Sybil attack. This issue exists because of an incomplete fix for CVE-2016-1549.
CVE-2019-14907 6 Canonical, Debian, Fedoraproject and 3 more 10 Ubuntu Linux, Debian Linux, Fedora and 7 more 2025-01-14 6.5 Medium
All samba versions 4.9.x before 4.9.18, 4.10.x before 4.10.12 and 4.11.x before 4.11.5 have an issue where if it is set with "log level = 3" (or above) then the string obtained from the client, after a failed character conversion, is printed. Such strings can be provided during the NTLMSSP authentication exchange. In the Samba AD DC in particular, this may cause a long-lived process(such as the RPC server) to terminate. (In the file server case, the most likely target, smbd, operates as process-per-client and so a crash there is harmless).
CVE-2019-19344 4 Canonical, Opensuse, Samba and 1 more 7 Ubuntu Linux, Leap, Samba and 4 more 2025-01-14 6.5 Medium
There is a use-after-free issue in all samba 4.9.x versions before 4.9.18, all samba 4.10.x versions before 4.10.12 and all samba 4.11.x versions before 4.11.5, essentially due to a call to realloc() while other local variables still point at the original buffer.
CVE-2019-9515 12 Apache, Apple, Canonical and 9 more 36 Traffic Server, Mac Os X, Swiftnio and 33 more 2025-01-14 7.5 High
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2018-7185 6 Canonical, Hpe, Netapp and 3 more 23 Ubuntu Linux, Hpux-ntp, Hci and 20 more 2025-01-14 7.5 High
The protocol engine in ntp 4.2.6 before 4.2.8p11 allows a remote attackers to cause a denial of service (disruption) by continually sending a packet with a zero-origin timestamp and source IP address of the "other side" of an interleaved association causing the victim ntpd to reset its association.
CVE-2019-3870 3 Fedoraproject, Samba, Synology 9 Fedora, Samba, Directory Server and 6 more 2025-01-14 6.1 Medium
A vulnerability was found in Samba from version (including) 4.9 to versions before 4.9.6 and 4.10.2. During the creation of a new Samba AD DC, files are created in a private subdirectory of the install location. This directory is typically mode 0700, that is owner (root) only access. However in some upgraded installations it will have other permissions, such as 0755, because this was the default before Samba 4.8. Within this directory, files are created with mode 0666, which is world-writable, including a sample krb5.conf, and the list of DNS names and servicePrincipalName values to update.
CVE-2018-8897 8 Apple, Canonical, Citrix and 5 more 19 Mac Os X, Ubuntu Linux, Xenserver and 16 more 2024-11-21 N/A
A statement in the System Programming Guide of the Intel 64 and IA-32 Architectures Software Developer's Manual (SDM) was mishandled in the development of some or all operating-system kernels, resulting in unexpected behavior for #DB exceptions that are deferred by MOV SS or POP SS, as demonstrated by (for example) privilege escalation in Windows, macOS, some Xen configurations, or FreeBSD, or a Linux kernel crash. The MOV to SS and POP SS instructions inhibit interrupts (including NMIs), data breakpoints, and single step trap exceptions until the instruction boundary following the next instruction (SDM Vol. 3A; section 6.8.3). (The inhibited data breakpoints are those on memory accessed by the MOV to SS or POP to SS instruction itself.) Note that debug exceptions are not inhibited by the interrupt enable (EFLAGS.IF) system flag (SDM Vol. 3A; section 2.3). If the instruction following the MOV to SS or POP to SS instruction is an instruction like SYSCALL, SYSENTER, INT 3, etc. that transfers control to the operating system at CPL < 3, the debug exception is delivered after the transfer to CPL < 3 is complete. OS kernels may not expect this order of events and may therefore experience unexpected behavior when it occurs.