Total
12754 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-49955 | 1 Linux | 1 Linux Kernel | 2025-11-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: powerpc/rtas: Fix RTAS MSR[HV] handling for Cell The semi-recent changes to MSR handling when entering RTAS (firmware) cause crashes on IBM Cell machines. An example trace: kernel tried to execute user page (2fff01a8) - exploit attempt? (uid: 0) BUG: Unable to handle kernel instruction fetch Faulting instruction address: 0x2fff01a8 Oops: Kernel access of bad area, sig: 11 [#1] BE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=4 NUMA Cell Modules linked in: CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 6.0.0-rc2-00433-gede0a8d3307a #207 NIP: 000000002fff01a8 LR: 0000000000032608 CTR: 0000000000000000 REGS: c0000000015236b0 TRAP: 0400 Tainted: G W (6.0.0-rc2-00433-gede0a8d3307a) MSR: 0000000008001002 <ME,RI> CR: 00000000 XER: 20000000 ... NIP 0x2fff01a8 LR 0x32608 Call Trace: 0xc00000000143c5f8 (unreliable) .rtas_call+0x224/0x320 .rtas_get_boot_time+0x70/0x150 .read_persistent_clock64+0x114/0x140 .read_persistent_wall_and_boot_offset+0x24/0x80 .timekeeping_init+0x40/0x29c .start_kernel+0x674/0x8f0 start_here_common+0x1c/0x50 Unlike PAPR platforms where RTAS is only used in guests, on the IBM Cell machines Linux runs with MSR[HV] set but also uses RTAS, provided by SLOF. Fix it by copying the MSR[HV] bit from the MSR value we've just read using mfmsr into the value used for RTAS. It seems like we could also fix it using an #ifdef CELL to set MSR[HV], but that doesn't work because it's possible to build a single kernel image that runs on both Cell native and pseries. | ||||
| CVE-2025-24512 | 2 Intel, Microsoft | 4 Proset, Proset/wireless, Proset/wireless Software and 1 more | 2025-11-14 | 5.6 Medium |
| Improper input validation for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Authorized adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (low) impacts. | ||||
| CVE-2025-38039 | 1 Linux | 1 Linux Kernel | 2025-11-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Avoid WARN_ON when configuring MQPRIO with HTB offload enabled When attempting to enable MQPRIO while HTB offload is already configured, the driver currently returns `-EINVAL` and triggers a `WARN_ON`, leading to an unnecessary call trace. Update the code to handle this case more gracefully by returning `-EOPNOTSUPP` instead, while also providing a helpful user message. | ||||
| CVE-2022-50012 | 1 Linux | 1 Linux Kernel | 2025-11-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: powerpc/64: Init jump labels before parse_early_param() On 64-bit, calling jump_label_init() in setup_feature_keys() is too late because static keys may be used in subroutines of parse_early_param() which is again subroutine of early_init_devtree(). For example booting with "threadirqs": static_key_enable_cpuslocked(): static key '0xc000000002953260' used before call to jump_label_init() WARNING: CPU: 0 PID: 0 at kernel/jump_label.c:166 static_key_enable_cpuslocked+0xfc/0x120 ... NIP static_key_enable_cpuslocked+0xfc/0x120 LR static_key_enable_cpuslocked+0xf8/0x120 Call Trace: static_key_enable_cpuslocked+0xf8/0x120 (unreliable) static_key_enable+0x30/0x50 setup_forced_irqthreads+0x28/0x40 do_early_param+0xa0/0x108 parse_args+0x290/0x4e0 parse_early_options+0x48/0x5c parse_early_param+0x58/0x84 early_init_devtree+0xd4/0x518 early_setup+0xb4/0x214 So call jump_label_init() just before parse_early_param() in early_init_devtree(). [mpe: Add call trace to change log and minor wording edits.] | ||||
| CVE-2022-50008 | 1 Linux | 1 Linux Kernel | 2025-11-14 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: kprobes: don't call disarm_kprobe() for disabled kprobes The assumption in __disable_kprobe() is wrong, and it could try to disarm an already disarmed kprobe and fire the WARN_ONCE() below. [0] We can easily reproduce this issue. 1. Write 0 to /sys/kernel/debug/kprobes/enabled. # echo 0 > /sys/kernel/debug/kprobes/enabled 2. Run execsnoop. At this time, one kprobe is disabled. # /usr/share/bcc/tools/execsnoop & [1] 2460 PCOMM PID PPID RET ARGS # cat /sys/kernel/debug/kprobes/list ffffffff91345650 r __x64_sys_execve+0x0 [FTRACE] ffffffff91345650 k __x64_sys_execve+0x0 [DISABLED][FTRACE] 3. Write 1 to /sys/kernel/debug/kprobes/enabled, which changes kprobes_all_disarmed to false but does not arm the disabled kprobe. # echo 1 > /sys/kernel/debug/kprobes/enabled # cat /sys/kernel/debug/kprobes/list ffffffff91345650 r __x64_sys_execve+0x0 [FTRACE] ffffffff91345650 k __x64_sys_execve+0x0 [DISABLED][FTRACE] 4. Kill execsnoop, when __disable_kprobe() calls disarm_kprobe() for the disabled kprobe and hits the WARN_ONCE() in __disarm_kprobe_ftrace(). # fg /usr/share/bcc/tools/execsnoop ^C Actually, WARN_ONCE() is fired twice, and __unregister_kprobe_top() misses some cleanups and leaves the aggregated kprobe in the hash table. Then, __unregister_trace_kprobe() initialises tk->rp.kp.list and creates an infinite loop like this. aggregated kprobe.list -> kprobe.list -. ^ | '.__.' In this situation, these commands fall into the infinite loop and result in RCU stall or soft lockup. cat /sys/kernel/debug/kprobes/list : show_kprobe_addr() enters into the infinite loop with RCU. /usr/share/bcc/tools/execsnoop : warn_kprobe_rereg() holds kprobe_mutex, and __get_valid_kprobe() is stuck in the loop. To avoid the issue, make sure we don't call disarm_kprobe() for disabled kprobes. [0] Failed to disarm kprobe-ftrace at __x64_sys_execve+0x0/0x40 (error -2) WARNING: CPU: 6 PID: 2460 at kernel/kprobes.c:1130 __disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129) Modules linked in: ena CPU: 6 PID: 2460 Comm: execsnoop Not tainted 5.19.0+ #28 Hardware name: Amazon EC2 c5.2xlarge/, BIOS 1.0 10/16/2017 RIP: 0010:__disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129) Code: 24 8b 02 eb c1 80 3d c4 83 f2 01 00 75 d4 48 8b 75 00 89 c2 48 c7 c7 90 fa 0f 92 89 04 24 c6 05 ab 83 01 e8 e4 94 f0 ff <0f> 0b 8b 04 24 eb b1 89 c6 48 c7 c7 60 fa 0f 92 89 04 24 e8 cc 94 RSP: 0018:ffff9e6ec154bd98 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffff930f7b00 RCX: 0000000000000001 RDX: 0000000080000001 RSI: ffffffff921461c5 RDI: 00000000ffffffff RBP: ffff89c504286da8 R08: 0000000000000000 R09: c0000000fffeffff R10: 0000000000000000 R11: ffff9e6ec154bc28 R12: ffff89c502394e40 R13: ffff89c502394c00 R14: ffff9e6ec154bc00 R15: 0000000000000000 FS: 00007fe800398740(0000) GS:ffff89c812d80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000c00057f010 CR3: 0000000103b54006 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> __disable_kprobe (kernel/kprobes.c:1716) disable_kprobe (kernel/kprobes.c:2392) __disable_trace_kprobe (kernel/trace/trace_kprobe.c:340) disable_trace_kprobe (kernel/trace/trace_kprobe.c:429) perf_trace_event_unreg.isra.2 (./include/linux/tracepoint.h:93 kernel/trace/trace_event_perf.c:168) perf_kprobe_destroy (kernel/trace/trace_event_perf.c:295) _free_event (kernel/events/core.c:4971) perf_event_release_kernel (kernel/events/core.c:5176) perf_release (kernel/events/core.c:5186) __fput (fs/file_table.c:321) task_work_run (./include/linux/ ---truncated--- | ||||
| CVE-2024-45301 | 1 Mintty Project | 1 Mintty | 2025-11-14 | 5.3 Medium |
| Mintty is a terminal emulator for Cygwin, MSYS, and WSL. In versions 2.3.6 through 3.7.4, several escape sequences can cause the mintty process to access a file in a specific path. It is triggered by simply printing them out on bash. An attacker can specify an arbitrary network path, negotiate an ntlm hash out of the victim's machine to an attacker controlled remote host. An attacker can use password cracking tools or NetNTLMv2 hashes to Pass the Hash. Version 3.7.5 fixes the issue. | ||||
| CVE-2025-34226 | 1 Openplcproject | 2 Openplc, Openplc V3 | 2025-11-13 | N/A |
| OpenPLC Runtime v3 contains an input validation flaw in the /upload-program-action endpoint: the epoch_time field supplied during program uploads is not validated and can be crafted to induce corruption of the programs database. After a successful malformed upload the runtime continues to operate until a restart; on restart the runtime can fail to start because of corrupted database entries, resulting in persistent denial of service requiring complete rebase of the product to recover. This vulnerability was remediated by commit 095ee09. | ||||
| CVE-2025-8582 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-11-13 | 4.3 Medium |
| Insufficient validation of untrusted input in Core in Google Chrome prior to 139.0.7258.66 allowed a remote attacker to spoof the contents of the Omnibox (URL bar) via a crafted HTML page. (Chromium security severity: Low) | ||||
| CVE-2025-10061 | 1 Mongodb | 1 Mongodb | 2025-11-13 | 6.5 Medium |
| An authorized user can cause a crash in the MongoDB Server through a specially crafted $group query. This vulnerability is related to the incorrect handling of certain accumulator functions when additional parameters are specified within the $group operation. This vulnerability could lead to denial of service if triggered repeatedly. This issue affects MongoDB Server v6.0 versions prior to 6.0.25, MongoDB Server v7.0 versions prior to 7.0.22, MongoDB Server v8.0 versions prior to 8.0.12 and MongoDB Server v8.1 versions prior to 8.1.2 | ||||
| CVE-2025-61084 | 1 Mdaemon | 1 Email Server | 2025-11-13 | 7.1 High |
| MDaemon Mail Server 23.5.2 validates SPF, DKIM, and DMARC using the email enclosed in angle brackets (<>) in the From: header of SMTP DATA. An attacker can craft a From: header with multiple invisible Unicode thin spaces to display a spoofed sender while passing validation, allowing email spoofing even when anti-spoofing protections are in place. NOTE: this is disputed by the Supplier because UI spoofing occurs in a client, not in a server such as MDaemon's product or any other server implementation. Also, if a client without its own spoofing protection must be used, the Header Screening feature in MDaemon's product can be employed to mitigate the client-side vulnerability. | ||||
| CVE-2025-63397 | 1 Oneflow | 1 Oneflow | 2025-11-12 | 6.5 Medium |
| Improper input validation in OneFlow v0.9.0 allows attackers to cause a segmentation fault via adding a Python sequence to the native code during broadcasting/type conversion. | ||||
| CVE-2023-53093 | 1 Linux | 1 Linux Kernel | 2025-11-12 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tracing: Do not let histogram values have some modifiers Histogram values can not be strings, stacktraces, graphs, symbols, syscalls, or grouped in buckets or log. Give an error if a value is set to do so. Note, the histogram code was not prepared to handle these modifiers for histograms and caused a bug. Mark Rutland reported: # echo 'p:copy_to_user __arch_copy_to_user n=$arg2' >> /sys/kernel/tracing/kprobe_events # echo 'hist:keys=n:vals=hitcount.buckets=8:sort=hitcount' > /sys/kernel/tracing/events/kprobes/copy_to_user/trigger # cat /sys/kernel/tracing/events/kprobes/copy_to_user/hist [ 143.694628] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [ 143.695190] Mem abort info: [ 143.695362] ESR = 0x0000000096000004 [ 143.695604] EC = 0x25: DABT (current EL), IL = 32 bits [ 143.695889] SET = 0, FnV = 0 [ 143.696077] EA = 0, S1PTW = 0 [ 143.696302] FSC = 0x04: level 0 translation fault [ 143.702381] Data abort info: [ 143.702614] ISV = 0, ISS = 0x00000004 [ 143.702832] CM = 0, WnR = 0 [ 143.703087] user pgtable: 4k pages, 48-bit VAs, pgdp=00000000448f9000 [ 143.703407] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000 [ 143.704137] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 143.704714] Modules linked in: [ 143.705273] CPU: 0 PID: 133 Comm: cat Not tainted 6.2.0-00003-g6fc512c10a7c #3 [ 143.706138] Hardware name: linux,dummy-virt (DT) [ 143.706723] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 143.707120] pc : hist_field_name.part.0+0x14/0x140 [ 143.707504] lr : hist_field_name.part.0+0x104/0x140 [ 143.707774] sp : ffff800008333a30 [ 143.707952] x29: ffff800008333a30 x28: 0000000000000001 x27: 0000000000400cc0 [ 143.708429] x26: ffffd7a653b20260 x25: 0000000000000000 x24: ffff10d303ee5800 [ 143.708776] x23: ffffd7a6539b27b0 x22: ffff10d303fb8c00 x21: 0000000000000001 [ 143.709127] x20: ffff10d303ec2000 x19: 0000000000000000 x18: 0000000000000000 [ 143.709478] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 [ 143.709824] x14: 0000000000000000 x13: 203a6f666e692072 x12: 6567676972742023 [ 143.710179] x11: 0a230a6d6172676f x10: 000000000000002c x9 : ffffd7a6521e018c [ 143.710584] x8 : 000000000000002c x7 : 7f7f7f7f7f7f7f7f x6 : 000000000000002c [ 143.710915] x5 : ffff10d303b0103e x4 : ffffd7a653b20261 x3 : 000000000000003d [ 143.711239] x2 : 0000000000020001 x1 : 0000000000000001 x0 : 0000000000000000 [ 143.711746] Call trace: [ 143.712115] hist_field_name.part.0+0x14/0x140 [ 143.712642] hist_field_name.part.0+0x104/0x140 [ 143.712925] hist_field_print+0x28/0x140 [ 143.713125] event_hist_trigger_print+0x174/0x4d0 [ 143.713348] hist_show+0xf8/0x980 [ 143.713521] seq_read_iter+0x1bc/0x4b0 [ 143.713711] seq_read+0x8c/0xc4 [ 143.713876] vfs_read+0xc8/0x2a4 [ 143.714043] ksys_read+0x70/0xfc [ 143.714218] __arm64_sys_read+0x24/0x30 [ 143.714400] invoke_syscall+0x50/0x120 [ 143.714587] el0_svc_common.constprop.0+0x4c/0x100 [ 143.714807] do_el0_svc+0x44/0xd0 [ 143.714970] el0_svc+0x2c/0x84 [ 143.715134] el0t_64_sync_handler+0xbc/0x140 [ 143.715334] el0t_64_sync+0x190/0x194 [ 143.715742] Code: a9bd7bfd 910003fd a90153f3 aa0003f3 (f9400000) [ 143.716510] ---[ end trace 0000000000000000 ]--- Segmentation fault | ||||
| CVE-2023-53074 | 1 Linux | 1 Linux Kernel | 2025-11-12 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix ttm_bo calltrace warning in psp_hw_fini The call trace occurs when the amdgpu is removed after the mode1 reset. During mode1 reset, from suspend to resume, there is no need to reinitialize the ta firmware buffer which caused the bo pin_count increase redundantly. [ 489.885525] Call Trace: [ 489.885525] <TASK> [ 489.885526] amdttm_bo_put+0x34/0x50 [amdttm] [ 489.885529] amdgpu_bo_free_kernel+0xe8/0x130 [amdgpu] [ 489.885620] psp_free_shared_bufs+0xb7/0x150 [amdgpu] [ 489.885720] psp_hw_fini+0xce/0x170 [amdgpu] [ 489.885815] amdgpu_device_fini_hw+0x2ff/0x413 [amdgpu] [ 489.885960] ? blocking_notifier_chain_unregister+0x56/0xb0 [ 489.885962] amdgpu_driver_unload_kms+0x51/0x60 [amdgpu] [ 489.886049] amdgpu_pci_remove+0x5a/0x140 [amdgpu] [ 489.886132] ? __pm_runtime_resume+0x60/0x90 [ 489.886134] pci_device_remove+0x3e/0xb0 [ 489.886135] __device_release_driver+0x1ab/0x2a0 [ 489.886137] driver_detach+0xf3/0x140 [ 489.886138] bus_remove_driver+0x6c/0xf0 [ 489.886140] driver_unregister+0x31/0x60 [ 489.886141] pci_unregister_driver+0x40/0x90 [ 489.886142] amdgpu_exit+0x15/0x451 [amdgpu] | ||||
| CVE-2025-20056 | 1 Intel | 1 Vtune Profiler | 2025-11-12 | 4.4 Medium |
| Improper input validation for some Intel VTune Profiler before version 2025.1 within Ring 3: User Applications may allow an escalation of privilege. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable data manipulation. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (low) and availability (low) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-25216 | 1 Intel | 1 Graphics Drivers | 2025-11-12 | 3.3 Low |
| Improper input validation in some firmware for some Intel(R) Graphics Drivers and Intel LTS kernels within Ring 1: Device Drivers may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are present with special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (low) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. | ||||
| CVE-2025-63783 | 1 Onlook | 1 Onlook | 2025-11-12 | 7.6 High |
| A Broken Object Level Authorization (BOLA) vulnerability was discovered in the tRPC project mutation APIs (update, delete, add/remove tag) of the Onlook web application 0.2.32. The vulnerability exists because the API fails to verify the ownership or membership of the currently authenticated user for the requested project ID. An authenticated attacker can send a malicious request containing another user's project ID to unlawfully modify, delete, or manipulate tags on that project, which can severely compromise data integrity and availability. | ||||
| CVE-2025-5680 | 1 Tongzhouyun | 1 Agilebpm | 2025-11-12 | 6.3 Medium |
| A vulnerability classified as critical was found in Shenzhen Dashi Tongzhou Information Technology AgileBPM up to 2.5.0. Affected by this vulnerability is the function executeScript of the file /src/main/java/com/dstz/sys/rest/controller/SysScriptController.java of the component Groovy Script Handler. The manipulation of the argument script leads to deserialization. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. | ||||
| CVE-2025-5679 | 1 Tongzhouyun | 1 Agilebpm | 2025-11-12 | 6.3 Medium |
| A vulnerability classified as critical has been found in Shenzhen Dashi Tongzhou Information Technology AgileBPM up to 2.5.0. Affected is the function parseStrByFreeMarker of the file /src/main/java/com/dstz/sys/rest/controller/SysToolsController.java. The manipulation of the argument str leads to deserialization. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. | ||||
| CVE-2025-24319 | 1 F5 | 1 Big-ip Next Central Manager | 2025-11-12 | 6.5 Medium |
| When BIG-IP Next Central Manager is running, undisclosed requests to the BIG-IP Next Central Manager API can cause the BIG-IP Next Central Manager Node's Kubernetes service to terminate. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. | ||||
| CVE-2022-49898 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix tree mod log mishandling of reallocated nodes We have been seeing the following panic in production kernel BUG at fs/btrfs/tree-mod-log.c:677! invalid opcode: 0000 [#1] SMP RIP: 0010:tree_mod_log_rewind+0x1b4/0x200 RSP: 0000:ffffc9002c02f890 EFLAGS: 00010293 RAX: 0000000000000003 RBX: ffff8882b448c700 RCX: 0000000000000000 RDX: 0000000000008000 RSI: 00000000000000a7 RDI: ffff88877d831c00 RBP: 0000000000000002 R08: 000000000000009f R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000100c40 R12: 0000000000000001 R13: ffff8886c26d6a00 R14: ffff88829f5424f8 R15: ffff88877d831a00 FS: 00007fee1d80c780(0000) GS:ffff8890400c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fee1963a020 CR3: 0000000434f33002 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: btrfs_get_old_root+0x12b/0x420 btrfs_search_old_slot+0x64/0x2f0 ? tree_mod_log_oldest_root+0x3d/0xf0 resolve_indirect_ref+0xfd/0x660 ? ulist_alloc+0x31/0x60 ? kmem_cache_alloc_trace+0x114/0x2c0 find_parent_nodes+0x97a/0x17e0 ? ulist_alloc+0x30/0x60 btrfs_find_all_roots_safe+0x97/0x150 iterate_extent_inodes+0x154/0x370 ? btrfs_search_path_in_tree+0x240/0x240 iterate_inodes_from_logical+0x98/0xd0 ? btrfs_search_path_in_tree+0x240/0x240 btrfs_ioctl_logical_to_ino+0xd9/0x180 btrfs_ioctl+0xe2/0x2ec0 ? __mod_memcg_lruvec_state+0x3d/0x280 ? do_sys_openat2+0x6d/0x140 ? kretprobe_dispatcher+0x47/0x70 ? kretprobe_rethook_handler+0x38/0x50 ? rethook_trampoline_handler+0x82/0x140 ? arch_rethook_trampoline_callback+0x3b/0x50 ? kmem_cache_free+0xfb/0x270 ? do_sys_openat2+0xd5/0x140 __x64_sys_ioctl+0x71/0xb0 do_syscall_64+0x2d/0x40 Which is this code in tree_mod_log_rewind() switch (tm->op) { case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING: BUG_ON(tm->slot < n); This occurs because we replay the nodes in order that they happened, and when we do a REPLACE we will log a REMOVE_WHILE_FREEING for every slot, starting at 0. 'n' here is the number of items in this block, which in this case was 1, but we had 2 REMOVE_WHILE_FREEING operations. The actual root cause of this was that we were replaying operations for a block that shouldn't have been replayed. Consider the following sequence of events 1. We have an already modified root, and we do a btrfs_get_tree_mod_seq(). 2. We begin removing items from this root, triggering KEY_REPLACE for it's child slots. 3. We remove one of the 2 children this root node points to, thus triggering the root node promotion of the remaining child, and freeing this node. 4. We modify a new root, and re-allocate the above node to the root node of this other root. The tree mod log looks something like this logical 0 op KEY_REPLACE (slot 1) seq 2 logical 0 op KEY_REMOVE (slot 1) seq 3 logical 0 op KEY_REMOVE_WHILE_FREEING (slot 0) seq 4 logical 4096 op LOG_ROOT_REPLACE (old logical 0) seq 5 logical 8192 op KEY_REMOVE_WHILE_FREEING (slot 1) seq 6 logical 8192 op KEY_REMOVE_WHILE_FREEING (slot 0) seq 7 logical 0 op LOG_ROOT_REPLACE (old logical 8192) seq 8 >From here the bug is triggered by the following steps 1. Call btrfs_get_old_root() on the new_root. 2. We call tree_mod_log_oldest_root(btrfs_root_node(new_root)), which is currently logical 0. 3. tree_mod_log_oldest_root() calls tree_mod_log_search_oldest(), which gives us the KEY_REPLACE seq 2, and since that's not a LOG_ROOT_REPLACE we incorrectly believe that we don't have an old root, because we expect that the most recent change should be a LOG_ROOT_REPLACE. 4. Back in tree_mod_log_oldest_root() we don't have a LOG_ROOT_REPLACE, so we don't set old_root, we simply use our e ---truncated--- | ||||